22nd INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY

Ahsanullah University of Science and Technology

Dept. of Computer Science and Engineering

A Novel Approach to Classify Bangla Sign Digits using Capsule Network

Tonmoy Hossain, Fairuz Shadmani Shishir, Faisal Muhammad Shah

HELLO!

I AM TONMOY HOSSAIN

Lecturer

Department of Computer Science and Engineering

Ahsanullah University of Science and Technology

INTRODUCTION

INTRODUCTION

- ✓ Hearing impaired refers to as partial or complete inability to hear
- \checkmark Approximately 13 million people are suffering variable degrees of hearing loss^[1]
- ✓ Previously, traditional machine learning technique was used
- Capsule Network is introduced for the classification task

[1]. Amin MN: Prevention of Deafness and Primary Ear Care (Bengali)- Society for Assistance to Hearing Impaired Children (SAHIC), Mohakhali, Dhaka-1212, Bangladesh.

MOTIVATION

- Well adaptation of automated sign digits classification in the perspective of Bangladesh
- Developing practical application for the deaf people
- On the perspective to the people who are unable to speak

RESEARCH DOMAIN

Problem

- Classification of Bangla Sign Digits
- (How we can implement the problem?
 - Traditional Machine Learning Techniques
 - Image Processing Methods
 - Deep Learning Model

BACKGROUNDS

Sign Language

- Use visual-manual modality to convey meaning
- (v) Expressed through manual articulations in combination with non-manual elements
- \bigcirc Generally more than 137 types of sign language used throughout the world

Fig 1: A depiction of Bangla Sign Digits

- A group of neurons (vectors) specifying the feature of the object and its likelihood
- Activity vector represents the instantiation parameter of the entity
 - 1. Length of the activity vector represents the existence of the entity
 - 2. Orientation to represent the instantiation parameters

BACKGROUND STUDIES

Existing Works

- Sanzidul et al. 2018
 - A convoluted 22 layer ConvNet architecture was implemented and achieved 94.88% of accuracy
- (Bikash et al. 2012
 - An ensemble method of negative correlation learning and feature extraction was employed and 93% of accuracy was accomplished
- Shahjalal et al. 2019
 - Tracking, detecting and recognizing are the primary steps of the model which is based one data augmentation
- **⊘** Sinith et al. 2012
 - Support Vector Machine along with Binary tree concept was operated for the classification

Proposed Methodology

Fig 2: Proposed methodology for classification using Capsule Network

Dataset

- THE ISHARA-LIPI DATASET
- Total Images: 1000
- Break down intro ten category based on the digits
- All the images are gray scaled and binary colored
- An identical shape of 128×128 pixels is maintained in all the images

Dataset Preparation and Pre-processing

- A total of 1000 images partitioning into 10 classes each of 100 images
- All images are converted into 28×28 pixels
- Images are labeled after binarization
- Converted the image pixels into a CSV file

- Pre-processed images are working as the input
- Omension: 28×28×1
- Output a unit vector of size 10

Convolutional Layer - 1

- (Input Size: 28×28×1
- Output Size: 20×20×256

$$Output \, Size = \left(\frac{n+2*p-f}{2}+1\right) \times \left(\frac{n+2*p-f}{2}+1\right)$$

- Filter or Kernel Size: 9 and No padding is done
- (Rectified Linear Unit (RELU) is used as the activation function
- Preserve Spatial Relation between the pixels

□ Convolutional Layer - 2

Input Size: 20×20×256

Output Size: 6×6×256

Obtained a feature map after the convolutional layer

Reshape and Lambda Layer

- Primary capsule layer
- Constituted with the feature map of capsules and
- Affine transformation, weighted sum is operated
- Activation Function: Squashing Function (Non linear)

Properties of Primary Capsule Layer

- Matrix Multiplication of input vectors with weight matrices
- Weighting input vectors
- Weighted sum
- Squashing Function

Capsule Layer (digitcaps layer)

- The higher level capsule layer
- Generate the final feature map

Length Layer and Classification

- Generate the final feature map
- Return the exact input shape as a tensor

A brief workflow of the proposed model			
1	Pre-processing and converted into CSV		
2	Transform into an input vector		
3	A feature map is obtained in the convolutional layers		
4	Affine transformation is applied		
5	Apply weighted sum		
6	Activation function — Squashing is operated		
7	A vector (shrinked) is sent to the capsule layer		
8	Dynamic Routing Algorithm is performed in the capsule layer		
9	Loss function is calculated for each capsule and sum up for the final loss		
10	Final classified output vector is assembled		

Experimental Results

Experimental Setup

- Train the data into three types of splitting ratio: 70:30, 80:20 and 90:10
- (v) Best Result: 90:10 (80% training, 10% validation and 10% testing)
- Google Colab is used to train the model

Dimension of the Network Architecture

Layer Name	Input Shape	Output Shape	Parameters
Input Layer	(28, 28, 1)	(28, 28, 1)	0
Convolutional Layer – 1	(28, 28, 1)	(20, 20, 256)	17712
Convolutional Layer – 2	(20, 20, 256)	(6, 6, 256)	4479232
Reshape	(6, 6, 256)	(1152,8)	0
Lambda	(1152,8)	(1152,8)	0
Capsule Layer	(1152,8)	(10, 16)	1486080
Length Layer	(10, 16)	(10)	0

Table 1: Dimension of all layers of the network architecture

Hyperparameter Setup

No Hyper-parameter		Value
1	Initialization_kernel	glorot_uniform
2	Initialization_bias	zeros
3 Learning_rate		0.001
4	Optimizer	Adam
5	Batch Sie	4
6 Epoch		50
7	Steps per epoch	580

Table 2: Hyperparameters of the architecture

Classification

No	Splitting Ratio	Accuracy
1	70:30	93.92%
2	80:20	98.25%
3	90:10	98.84%

Table 3: Classification of the proposed model

Performance Comparison

Methodology	Layer	Accuracy
Sanzidul et al.	22	95.5%
Proposed Model	7	98.84%

Table 4: Performance Comparison with the existing work on same dataset

CONCLUSION

Conclusion

- The model is a seven-layer architecture which is an unsophisticated model to train and test
- Omputation power and training time is curtailed with respect to the existing articles as well as data augmentation is don
- Spatial properties of an object are taking into account along with the activity vector
- O Pooling layer which is lossy and does not conserve all the spatial information is apprehended in this architecture

FUTURE PLAN

Future Plan

- Work on Bangla Sign Character
- Expand the model to work on Videos
- Employ the model on a substantial large dataset
- Try to generate text from sign language conversation video

THANK YOU!