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The Problem & "‘

Potential of Graphs,
DSU, Spearman's r

e Parkinson’s Disease (PD) is a neurodegenerative
complication that affects the motor muscular system [1].

e PD, may cause a subject’'s speech to become mumbled,

hoarse—endorsing speech as a potential detector [2].

@ @ @ @ @ @ @ . e UCI garnered a dataset [4] on PD, having acoustic features

IMakeSet creates 8 singletons. and fewer tuples, inconvenient for ML algorithms.

e PCA renders obscure inside intel whereas Apriori rule
mining is more popular for nominal itemsets.

<1 2 5 6 3) u @ e DSU may be used on graphs to track a set of features

After some operations of Union, some sets are grouped partitioned into a number of non-overlapping subsets.

together. e Spearman’s r tells the magnitude and direction of a
monotonic relationship, outputting Pearson’s r more easily.

Fig. 1: a depiction of what Disjoint
Set Union (DSU) practically does




Literature Review in
Two Paradigms

e Recent literature has explored
structured, time-series and visual
data.

Some focused on preprocessing while
the others, on advanced analytics.
We review current literature with a
focus on both:

o Focus on Feature Selection

o Focus on Predictive Modelling
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Approach =
r plus DSU, 320 features, NN (max.) _
neuromelanin-sensitive signals (MRl images) 10.8600
meta-analysis on researches '0.8500
r plus DSU, 247 features, NN (max.) _
binary combination, S-layered CNN |0.8410
ternary combination, 9-layered CNMN .D 8330 :
kNN [0.8276
unary combination, 9-layered CNN :0.8259 :
LDA, NN |0.8214
r plus DSU, 247 features, NN (avg.) _
Chi-squared model, Adaboost |0./644
deep NN classifiers L{} 6805

Value of Metric 0.00.2 0.4 0.6 0.8

proposed method vs. related work
M proposed method

[ reviewed literature

Fig. 2: a synopsis of the proposed method vs.
related literature



Proposed Method:
Overview

Fig. 3: a mindmap of the
overall process followed
for the proposed detection
of Parkinson'’s
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A. Preparation of Adjacency Matrix

B. Performing DSU on features

\

,»[ demolish boundaries among features J

set a tolerable threshold for
Spearman's r

[calculate Spearman's r for each feature]

against all other features

[ consider absolute values of rs

preare a unidirectional network graph
basis Pearson's r

matrix of rs

[ prepare an upper triangular

output the count of connections
and the connections

|
)

,»[ induct features ]

r

initialize features to
their own roots

\

'finput the edges from the
adjacency matrix

\

-

form disjoint sets until
the list of edges is
exhausted

extract out the final roots

finalize the set of roots as a
contracted feature-set

C. Fitting Model, Validating Results

set benchmark
with no
shrinkage in
feature-space

shrink dataset to 5
r-thresholded variants
(r=0.99, 0.98, 0.95,
0.90, 0.80)

feed in the validate
data to the increase in
benchmark accuracies

NN (ANOVA)

t

validate
decrement in
training time

(ANOVA)

validate increase
in accuracies
from benchmark
(ANOVA)




Proposed Method:
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Algorithm for Performing DSU on Features

Algorithm 1: Unification of Disjoint Feature-scts

Input: binary tuples representing r-thresholded edges
Qutput: roots after performing all unions

1

2 Function get_root (ftr):

3 while true do

4 if feature_root(ftr] = fir then
5 root « fir

6 break

7 else

8 s.push(ftr)

9 fir + feature_root[ftr]
10 while /s.empiy() do

11 feature_root[s.top()] « ftr
12 | s.pop()

13 return root

Proc. unite_features (feature!, feature?®):

root_feature' « get_root( feature')

root_feature® « get_root( feature?)
if root_feature' # root_feature® then

feature_root[root_feature'| < root_feature®

feature_size[root_feature®] +=
feature_size[root_feature!)
feature_root[root_feature'] < 0

Function new_feature (fir):

prev_size < features.size()
features.insert(ftr)

present_size < feature.size()

if prev_size = present_size then
L return false

return true

31 Function main:

2
R}
M
3s
36
L)

f + count of leature
for i = 0; i++4; while i < f do
input(feature)
if new_feature(feature) then
feature_root[feature] + feature
L feature_size[feature] « 1

¢ + count of correlations
for i « 0; i++; while i < ¢ do
L input( feature®, feature®)

unite_features( feature', feature®)

print out distinct elements of feature_root

return control to system
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Experimental Results & Discussion:
Training got Easier
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Fig. 4: reduction in training loss
with the reduction in r-threshold
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Fig. 5: the benchmark NN used in the proposed method

TABLE II: ANOVA (Analysis of Variance) results, verifying
effective differences among training time and accuracy across

5 r-thresholds

ANOVA test metrics

values (for training time)

values (for test accuracy)

degrees of freedom

ind: 4, residuals: 45

ind: 4, residuals: 45

sum of squares

ind: 13.51, residuals: 0.46

ind: 0.09337, residuals: 0.06947

mean of squares

ind: 3.377, residuals: 0.01

ind: 0.023342, residuals: 0.001544

F-rano

330.2

15.12

p-value, Pr( > F)

<2e-16 ***

6.59¢-08 ***




Fig. 6: impact of r, influencing the

TABLE 1V: r-test results, verifying incremental improvements
in accuracy compared to the benchmark
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Features got Pruned

Experimental Results & Discussion:
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Conclusion & Future Scopes

e The work has introduced a novel feature-exclusion method based on the application of DSU.

e The research proposes construction of graphs using strong correlations, promoting Spearman's r.

e To optimize, the study makes the graphs unidirectional and reduces the matrices to upper triangular.
e The solution prunes a square dataset into a rectangular one, catering to the hunger of NNs for data.
e Contrary to PCA, DSU can reveal what features have been unified under a root till a timestamp.

e The solution has shown to improve performance through statistical inference.

e Anr larger than the optimal will generate noise while a smaller one risks omitting patterns.

e Future researches may focus on nonlinear correlations.

e The research indicates ways to leverage traditional computing before diving into machine learning.
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