11[™] INTERNATIONAL CONFERENCE ON

ELECTRICAL AND COMPUTER ENGINEERING (ICECE)

icece.buet.ac.bd Conference Record Number: #51571

PAPER ID **778**

A Comparative Study of CNN Transfer Learning **Classification Algorithms with Segmentation for COVID-19 Detection from CT Scan Images**

> Ashek Seum, Amir Hossain Raj, Shadman Sakib, Tonmoy Hossain Department of Computer Science and Engineering Ahsanullah University of Science and Technology Dhaka, Bangladesh

Presentation Outline

04 Methodology

02 Motivation

05 Results

03 Objective

06 Conclusion

Introduction

- Thousands of people are being affected by highly contagious
 COVID-19 every day
- Artificial intelligence and deep learning methods can come to aid in this situation
- A thorough comparison between deep learning models can help understand the possible roadmap of automatic COVID-19 classification

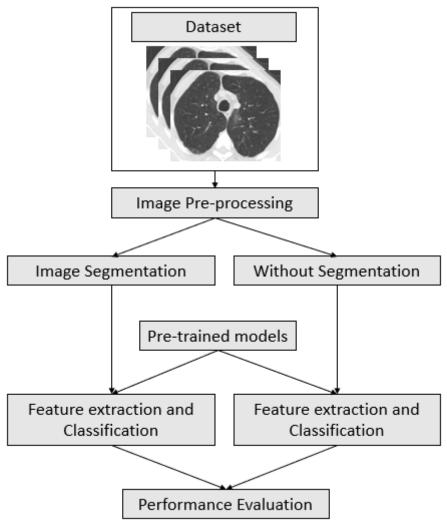
Motivation

- To contain the spread of COVID-19, early detection is very important
- Current testing methods are both time consuming and costly
- Deep learning classification with transfer learning of lungs CT scans can be very useful in this situation
- On top of that, applying segmentation on the images can improve the results by removing extra pixels

Objective

- Experimenting with readily available pre-trained deep learning models on lungs CT scan images
- Applying segmentation on the images to see the comparison of results

Proposed Methodology



A basic architecture of COVID-19 classification

1. Dataset:

- SARS-COV-2 CT-Scan dataset from Kaggle
- 2481 CT scan images
- 1252 CT scans are from COVID positive patients
- 1229 CT scans are from COVID negative patients

2. Image Pre-processing and Segmentation:

- Resized to the dimension of 224 x 224 x 3 for deep learning models
- Resized to the dimension of 256 x 256 x 3 for segmentation model
- Normalization was applied
- The images were then fed into the segmentation architecture with ImageNet weights to get the segmented images

3. Feature Extraction and Classification:

- 12 off-the-shelf Convolution Neural Network (CNN) architectures used
- U-Net as segmentation algorithm
- We replaced the classification layer of CNN models with a distinct layer
- Outputs of this new layer is equal to the binary classes of the CT scan dataset
- Input features in the new layer remained the same as before

4. Performance Evaluation

Metric	Working Principle	Formula
Sensitivity	Correct detection of COVID CT scans	$Sensitivity = \frac{TP}{TP + FN}$
Specificity	Correct detection of Non-COVID CT scans	$Specificity = \frac{TN}{TN + FP}$
Precision	Probability of COVID of being indeed COVID	$Precision = \frac{TP}{TP + FP}$
F1 Score	Weighted average of precision and sensitivity	$F1 Score = \frac{2*TP}{2*TP + FP + FN}$
Accuracy	Ratio of correct predictions to total predictions	$Accuracy = \frac{TP + TN}{P + N}$

Experimental Results

1. Performance of transfer learning models without segmentation on test data

Model Name	Sensitivity	Precision	Specificity	F1 Score	Accuracy
AlexNet	82.0 %	80.08 %	79.27 %	81.03 %	80.65 %
VGG 16	68.40 %	95.53 %	96.75 %	79.72 %	82.46 %
VGG 19	71.60 %	89.95 %	91.87 %	79.73 %	81.65 %
ResNet18	90.80 %	75.67 %	70.33 %	82.55 %	80.65 %
ResNet50	68.40 %	96.61 %	97.56 %	80.09 %	82.86 %
ResNet101	81.20 %	95.31 %	95.93 %	87.69 %	88.51 %
ResNet152	76.80 %	92.31 %	93.50 %	83.84 %	85.08 %
DenseNet121	70.00 %	98.31 %	98.78 %	81.78 %	84.27 %
DenseNet169	82.40 %	95.81 %	96.34 %	88.60 %	89.31 %
DenseNet201	74.40 %	97.89 %	98.37 %	84.55 %	86.29 %
Inception_v3	75.60 %	95.94 %	96.75 %	84.56 %	86.09 %
GoogleNet	82.80 %	81.18 %	80.49 %	81.98 %	81.65 %

Experimental Results (contd.)

2. Performance of transfer learning models with segmentation on test data

Model Name	Sensitivity	Precision	Specificity	F1 Score	Accuracy
VGG 16	83.20 %	83.20 %	82.93 %	83.20 %	83.06 %
VGG 19	84.80 %	77.09 %	74.39 %	80.76 %	79.64 %
ResNet18	80.40 %	99.50 %	99.59 %	88.94 %	89.92 %
ResNet50	80.80 %	92.66 %	93.50 %	86.32 %	87.10 %
ResNet101	82.80 %	95.83 %	96.34 %	88.84 %	89.52 %
ResNet152	77.20 %	91.90 %	93.09 %	83.91 %	85.08 %
DenseNet121	79.60 %	98.03 %	98.37 %	87.86 %	88.91 %
DenseNet169	79.20 %	98.51 %	98.78 %	87.80 %	88.91 %
DenseNet201	86.80 %	92.74 %	93.09 %	89.67 %	89.92 %

Experimental Results (contd.)

3. Performance Comparison of some of the best performing models

	Without Segmentation		With Segmentation	
Models	F1	Accuracy	F1	Accuracy
ResNet18	82.55 %	80.65 %	88.94 %	89.92 %
DenseNet201	84.55 %	86.29 %	89.67 %	89.92 %

Conclusion

- We conducted a comparative analysis with some of the pretrained CNN models and segmentation algorithm to classify COVID and Non-COVID classes.
- From our study, we see that, using segmentation before classification, improves the overall performance of the models.

Thank You