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INTRODUCTION
● Biometrics authentication is a method used to measure unique traits and

behavioral characteristics of a user for identification.

● Finger Vein recognition uses the unique vein pattern of each individual.

● Images captured during image acquisition of finger vein shows fluctuation

in quality.

● Modified Maximum Curvature Method (MMCM) is proposed for vein

extraction from the images.

● Logistic Regression (LR) is proposed for classification.
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MOTIVATION
● Security Concerns are at a rise

● Most Biometric modalities are affected easily by environmental factors or

have complex hardwares.

● Finger vein has minimum possibility of duplication.

● Finger vein authentication is hygienic thus requires low hardware

maintenance.

● Finger vein authentication has low False Acceptance and False Rejection

Rate.

● The authentication system can be used for credit/debit authentication,

banking, employee tracking, etc.
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OBJECTIVE
● Finding the proper combination of image preprocessing and feature

extraction to tackle illumination and dimension fluctuation observed in

images captured with NIR.

● Determining which machine learning classification model performs best

for classifying/identifying the users.
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RELATED
WORK
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RELATED WORK
● Miura et al. [1] - 2007

○ Finger Vein Extraction: Maximum Curvature Method (MCM)

○ Classifier: Template Matching

● Xie et al. [2] - 2014
○ Finger Vein Extraction: Explicit Guided Directional Filter

○ Classifier: Extreme Learning Machine (ELM)

● Kumar et al. [3] - 2015
○ Finger Vein Extraction: Local Binary Pattern (LBP)

○ Classifier: Multi Support Vector Machine (MSVM)

● Liu et al. [4] - 2016
○ Finger Vein Extraction: Efficient Local Binary Pattern (ELBP)

○ Classifier: Random Forest
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RELATED WORK (CONT.)
● Jumaa et al. [5] - 2019

○ Finger Vein Extraction: Hierarchical Centroid + Histogram of Gradients

○ Classifier: K-Nearest Neighbor (KNN)

● Khanam et al. [6] - 2019
○ Finger Vein Extraction: Frangi Filter + Features from Accelerated Segment Test (FAST) +

Freak Descriptor Extraction

○ Classifier: KNN

● Qayoom et al. [7] - 2019
○ Finger Vein Extraction: Gabor filter + FAST + Freak Descriptor

○ Classifier: Naive Bayes + Discriminant Analysis

● Meng et al. [8] - 2020
○ Finger Vein Extraction: Pixel Level Feature Extraction

○ Classifier: SVM
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PROPOSED 
METHOD
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PROPOSED METHOD (CONT.)
● Step 1: Image Preprocessing

Fig. 1.3: Enhanced Image

○ Image Enhancement:

■ Contrast Limited Adaptive

Histogram Equalisation (CLAHE)

Fig. 1.1: Binary Mask Fig. 1.2: Region Of Interest
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○ Finger Region Extraction
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PROPOSED METHOD (CONT.)
○ Noise Reduction:

■ Gaussian Filter

○ Normalization:

■ Affine Transform

Fig. 2.1: Filtered Image

Fig. 2.2: Normalized Mask Fig. 2.3: Normalized 
Region Of Interest
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PROPOSED METHOD (CONT.)
● Step 2: Feature Extraction

○ Maximum Curvature Method (MCM)

■ Extraction of the center point of the veins

● Calculation of the curvature of profiles

● Detection of the center of the veins

● Assignment of scores to the center position

● Calculation of all the profiles

■ Connection of vein centers

■ Labelling the image

● Binarization

Fig. 3.1: Extracted Finger Vein 

Fig. 3.2: Overlaid Finger Vein
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PROPOSED METHOD (CONT.)
● Step 3: Classification

○ Logistic Regression

■ Logistic Regression is a ‘Statistical Learning’ technique categorized in ‘Supervised’

Machine Learning (ML) methods dedicated to ‘Classification’ tasks.
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■ Logistic Regression measures the relationship between the dependent variable (our

label, what we want to predict) and the one or more independent variables (our

features), by estimating probabilities using it’s underlying logistic function.
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PROPOSED METHOD (CONT.)
■ The Sigmoid-Function S(z) / logistic function is an S-shaped curve that can take any

real-valued number and map it into a value between the range of 0 and 1, but never

exactly at those limits. This values between 0 and 1 will then be transformed into

either 0 or 1 using a threshold classifier.

𝑺 𝒛 =
𝟏

𝟏 + 𝒆−𝒛

Here, S(z) = the output estimated probability between 0 and 1 

z = the input to the function and the attempted estimated prediction

■ Logistic Regression works well on large samples.
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PROPOSED METHOD (CONT.)
■ Logistic Regression works well on linearly separable data.

■ Logistic Regression can easily extend to multiple classes (multinomial regression) and

a natural probabilistic view of class predictions.
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RESULT AND 
DISCUSSION
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DATASET
● SDUMLA-HMT [12] dataset

● No of images: 3816

● No. of subject: 106

● Image Resolution: 320x240 pixel

Fig. 4: Images  from SDUMLA-
HMT [12] Dataset
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EXPERIMENTAL SETUP
The conducted tests and the algorithm of the proposed method were

implemented using Python (version 3.7.5) on a PC with Intel(R) Core(TM) i5-

8400 CPU, 2.80GHZ 2.81GHZ processor, 16GB RAM.
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RESULT AND EVALUATION
● The classification models KNN, SVM, Random Forest, Stochastic Gradient

Descent (SGD) are performed on three different train test splits in order

to obtain the optimum split ratio.
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RESULT AND EVALUATION (SPLIT RATIO)
Result: 75:25 ratio gives the optimal result

Fig. 5: An EER comparison of the existing classification model based on different split ratios
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RESULT AND EVALUATION (CONT.)
● Classification models such as KNN, SVM, LR, Random Forest, Decision

Tree, SGD are performed on the extracted image obtained by using the

proposed method, where the dataset has been split into 75:25 ratio.
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Classifier Accuracy Precision Recall Score F1 Score EER

KNN (n=5) 0.5409 0.6486 0.5470 0.5365 0.1490

SVM 0.8468 0.8549 0.8650 0.8480 0.0489

Logistic Regression 0.8438 0.8579 0.8614 0.8455 0.0436

Random Forest 0.8459 0.8525 0.8639 0.8448 0.0489

Decision Tree 0.3396 0.5271 0.3508 0.3878 0.1734

Stochastic Gradient Descent (SGD) 0.7862 0.8328 0.7973 0.7907 0.0557
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Result: LR is showing better result in terms of EER. 

Table. 1: Comparison of classification performance

RESULT AND EVALUATION (CONT.)
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RESULT AND EVALUATION (CONT.)
● Comparison of results of finger vein feature extraction and

classification on SDUMLA-HMT dataset is performed.
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Paper year Feature Extraction Classification EER

Kumar et al. [3] 2015 Local Binary Pattern (LBP) Multi-Support Vector Machine (SVM) 0.523

Zhou et al. [18] 2016 Superpixel over segmentation Super-Pixel Context Feature (SPCF) 0.0697

Syarif et al. [19] 2017 Enhanced Maximum Curvature SVM 0.14

Fang et al. [20] 2018 Mini-ROI Extraction Two channel network learning 0.47

Proposed Method ___ Modified Maximum Curvature Logistic Regression 0.0436
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Result: Proposed MMCM shows noticeable improvement in decreasing EER in comparison to

the given recent works.
Table. 2: Result performance comparison of existing finger vein extraction and classification methods

RESULT AND EVALUATION (CONT.)
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CONCLUSION
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Conclusion
● The proposed hybrid architecture MMCM is a combination of

○ Image Preprocessing:

■ Region Of Interest Extraction

■ Enhancement with CLAHE

■ Noise Reduction with Gaussian Filter

■ Affine Transform Normalization

○ Feature Extraction:

■ MCM

○ Classifier:

■ LR
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Conclusion (CONT.)
● MMCM outperforms existing finger vein authentication methods with a

reasonable EER of 0.043.

● The LR model performs well on multi class classification.
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FUTURE WORK
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FUTURE WORK 
● Implementation of a Deep Learning model for classification

● Performing the proposed model on comprehensive datasets
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