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Introduction

➢ Finger vein biometric system is a promising

biometric system that uses pattern recognition

techniques based on images of human finger vein

patterns.
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➢ Takes only about 0.8 seconds to verify one input

finger vein sample.

➢ Near Infrared light is used in image capturing

devices for this system.

Fig. 1: Biometric Authentication



Steps of Finger Vein Biometric System
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Steps of Finger Vein Biometric System (Cont.)
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● Image Acquisition

● Pre-Processing

● Feature Extraction

● Classification

Fig. 2: Finger Vein Authentication



Motivation

❏ Finger vein biometric system

➢ Very low risk of forgery or theft.

➢ Non-invasive, contactless imaging.

❏ Deep Learning

➢ Deep learning is popular for its stability and accuracy in performance.

➢ Can deal greatly with the different image qualities.

➢ Gives comparatively more approvable results than other methods.
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Objective

➢ To study the existing finger vein recognition systems.

➢ To observe the difference among multiple proposed systems and to 

find out the best method for recognition system.

➢ Propose a new method using deep learning.
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What is Deep Learning?

➢ A part of machine Learning family.

➢ An AI function that mimics the workings of the human brain in processing data

for use in detecting objects, recognizing speech, translating languages and

making decisions.

➢ The learning can be supervised or unsupervised.

➢ Used for both feature extraction and classification.
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Deep Learning Architectures

➢ Convolutional Neural Network 

(CNN)

❏ AlexNET

❏ LeNet-5

❏ DenseNet

❏ VGG-Net-16

❏ ResNet

➢ Deep Neural Network (DNN)
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Fig. 3: Deep Learning Architecture



Deep Learning Architectures (Cont.)

❏ LeNet-5

➢ Seven layers and it contains some features including convolution

layers, subsampling layers, and two or three fully connected layers.

➢ Sufficiently good for image classification.

➢ Lacks in complex classification problems with large datasets.
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Deep Learning Architectures (Cont.)

❏ AlexNet  

➢ five convolution layers and two fully-connected layers.

➢ Reduces the complications of image processing.

➢ The fully connected layers are  computationally expensive.
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Deep Learning Architectures (Cont.)

❏ VGG-Net-16 : 

➢ 13 convolutional layers, 5 pooling layers, and 3 FCLs.

➢ Higher performance in feature extraction.

➢ Slow to train.
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Deep Learning Architectures (Cont.)

➢ ResNet: Are implemented with double or triple layer that contains

non linearities (ReLU) and batch normalization in between.
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Deep Learning Architectures (Cont.)

❏ DenseNet: 

➢ Uses skip connectivity which improves the skip connection structure of ResNet.

➢ Decreases the networks’ computation-efficiency
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Deep Learning Architectures (Cont.)

❏ Deep Neural Network (DNN): 

➢ A part of the Artificial Neural Network where there are multiple layers 

between input and output layers

➢ Is able to learn features that optimally represent the given training data.
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Datasets
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➢ SDUMLA-HMT
➢ FV-USM
➢ HKPU
➢ UTFV

Fig:4 - (b) SDUMLA-HMT

Fig:4 - (a) FV-USM



Evaluation Matrices

➢ False Acceptance Rate(FAR): FAR is an error that occurs when the un-enrolled finger 

vein image is accepted as an enrolled finger vein image.

FAR=False Positive/(False Positive+True Negative)

➢ False Rejection Rate(FRR): FRR  is an error that indicates that the enrolled finger 

vein image is rejected as an un-enrolled finger vein image.

FRR=False Negative/(False Negative+True Positive)
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Evaluation Matrices (Cont.)

➢ Equal Error Rate(EER): When the proportion of false acceptance rate(FAR) and the 

proportion of false rejection rate(FRR) are equal , then the common value is the 

EER.

➢ Accuracy: Accuracy is actually the ratio of the correct classified data and all 

classified data.

Accuracy = (True Positive+True Negative)/(True Positive+True Negative+False 

Positive+False Negative)
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Performance Analysis of Different Architectures
Table: 1
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Method Paper Year Dataset Performance

(%)

DNN Qin et al[7] 2015 FV-USM[1], 

HKPU[2]

EER = 0.70 and 1.50

LeNet-5 Itqan et al[4] 2016 Personal dataset Average accuracy = 96

Reduced-complexity

four-layer CNN

Radzi et al[6] 2016 Personal dataset RR = 100.00  and 99.38

VGG-Net-16 Hong et al[8] 2017 personal dataset,

personal dataset

SDUMLA-HMT

EER = 0.396, 1.275 and  

3.906

AlexNet Liu et al[5] 2017 SDUMLA-FV RR = 99.53

EER = 0.80
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Method Paper Year Dataset Performance

(%)

CNN Meng et al[9] 2017 DataTang Accuracy = 99.4

ERR = 0.21

ResNet Kim et al[12] 2018 SDUMLA-HMT, HKPU EER = 3.0653 and 

0.8888

DRFRDL Rakkimuthu et al[13] 2019 SDUMLA-HMT Accuracy = 95

DenseNet Song et al [17] 2019 SDUMLA-HMT, 

HKPU-FV(version-1)

EER = 2.35 and  0.33

Performance Analysis of Different Architectures 
Table: 1 (Cont.)
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Method Paper Year Dataset Performance

(%)

Unet, RefineNet, SegNet Jalilian et al[14] 2019 UTFVP[3] EER = 0.64, 1.76 and 2.21

CNN with depthwise 

separable convolution

Kang et al[18] 2019 Personal Dataset EER = 2.13

CNN-LSTM Kuzu et al[19] 2020 Personal dataset Accuracy = 99.13%

Performance Analysis of Different Architectures 
Table: 1 (Cont.)



Discussion
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➢ AlexNet shows the highest accuracy and lower EER on SDUMLA dataset.
➢ DenseNet also gives lower EER on same dataset.
➢ The most important thing is, these architectures are used or proposed in 

recent years by the researchers.



Contribution of this Paper

➢ Recent and noteworthy deep learning models have been assembled.

➢ Multiple datasets and evaluation metrics that are generally used to evaluate

performance have been discussed in this paper.

➢ Provides a single platform where researchers would get all deep learning based

finger vein authentication architectures for their purposes.
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CONCLUSION

➢ Most of the CNN architectures are computationally slow when it comes to large 

datasets, but shows higher performance in feature extraction.

➢ DNN is able to learn the features from training data, still sometimes it fails to 

extract discriminative features.
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Future Plan

➢ Introducing a new method by combining the traditional feature extraction

method and deep learning based classifier.

➢ Improving recognition accuracy and robustness by solving alignment and image

quality issues.

➢ Making the system capable of performing on several large datasets for

performance evaluation.
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