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What is summarization?

The process of finding the most relevant informations in a text
and presenting them in a condensed form.

• Single Document Summarization
• Given a single document produces abstract, outline or headline

• Multi-Document Summarization
• A cluster of related documents about the same topic

• Summaries can be classified as:
• Extractive

• Extract important sentences from the original text without any modification.

• Abstractive
• Abstractive methods rewrite sentences from scratch, involving compression, fusion

and paraphrasing.
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Why Multi-Document Summarization (MDS)?

• Often times, we want a summary for a whole topic, rather than 
one document.

• E.g. different news articles about the same event

• More challenging, as we need to think about the relationships 
between documents.

Tuesday, August 21, 2018 3

US Election



Contributions
• An abstractive sentence generation model is developed which jointly performs

sentence fusion and paraphrasing.

• The sentence level model is then applied to design a full abstractive multi-document

summarization.

• Different from the recent neural abstractive models, this model is

• Completely unsupervised

• Full abstractive

• Applied to multi-document summarization

• Domain independent ; tested on news document and user reviews

• An optimal solution is proposed for the classical summary length limit problem in

multi-document setting.
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Proposed Approach
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1. Related Work

• Early Works:
• Word deletion based approaches.

• Clarke and Lapata 2006, 2008

• Graph based approaches.
• Filippova 2010, Boudin and Morin 2013

• Recent Works:
• Attention based encoder-decoder neural network.

• Bahdanau 2015, Luong 2015, Cheng and Lapata 2016

• Seq2seq based learning approaches.
• Rush 2015

• Multi-Document based approaches.
• Yasunaga 2017, Li 2017
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2. Paraphrastic Sentence Fusion

• Most of the previous works are based on deletion based 
compression.

• Finding representation for sentence abstraction using sentence 
fusion and lexical paraphrase.

• We apply our model to the multi-document abstractive text 
summarization.

• Our model balances information coverage and abstractiveness.
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2.1 Word Graph Construction

• We generate a one sentence representation from a cluster of 
related sentences using the word-graph approach (Boudin
and Morin, 2013).

• 𝑆 = {𝑆1, 𝑆2, … . 𝑆𝑛} is a cluster of related sentences. We construct 
a word-graph 𝐺 = (𝑉, 𝐸) by iteratively adding sentences to it.

• The vertices are the words along with the parts-of-speech 
(POS) tags and directed edges are the adjacent words in the 
sentences. 

• Each sentence is connected to dummy start and end nodes 
to mark the beginning and ending of the sentences.
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2.1 Word Graph Construction
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• S1: In Asia Japan Nikkei lost 9.6% while Hong Kongs Hang Seng index fell 8.3%.

• S2: Elsewhere in Asia Hong Kongs Hang Seng index fell 8.3% to 12,618.

First Sentence (S1)

Second Sentence (S2)



2.1 Word Graph Construction
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First Sentence (S1)

Second Sentence (S2)

• Ex1: In Asia Hong Kongs Hang Seng index fell 8.3%.

• Ex2: Elsewhere in Asia Hong Kongs Hang Seng index fell 8.3%.

• …………………………………………………………………………………………………………………………

• ……………………………………………………………………………………………………………..

• ExK: Elsewhere in Asia Japan Nikkei lost 9.6% while Hong Kongs Hang Seng index fell 8.3%.

𝐾 Generated Paths



2.2 Candidate Ranking
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• We rank the sentences using TextRank algorithm (Mihalcea and Tarau,
2004).

• An undirected graph is constructed where sentences are vertices, and
edge weights are the similarity between vertices (sentences).

• Instead of lexical overlap, we use the semantic information using
sentence embedding.

• After constructing the graph, we can run the TextRank algorithm on it by
repeatedly applying the updated TextRank rule until convergence.



2.2.1 Sentence Embedding
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• Bi-GRU processes the input both from forward and backward direction.

• For each position t, forward and backward states are concatenated into

final hidden state ℎ𝑡 = ℎ𝑡 ⊕ ℎ𝑡

• Here, ℎ𝑡 = 𝑮𝑹𝑼 ℎ𝑡−1, 𝑒 𝑤𝑡 and ℎ𝑡 = 𝑮𝑹𝑼 ℎ𝑡+1, 𝑒 𝑤𝑡

• Output sentence embedding 𝑥𝑖 = ℎ𝐿for the sentence 𝑆𝑖



2.2.1 Sentence Embedding
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• Sentence, 𝑆 = (𝑤1,𝑤2 , … , 𝑤𝐿 )where L is length of the sentence S.

• The sentence is encoded using bi-direcational GRUs.

• For uni-directional case, while reading input:
• ℎ𝑡 = 𝑮𝑹𝑼 (ℎ𝑡−1, 𝑒 (𝑤𝑡))

• Where ℎ𝑡 ∈ ℝ𝑛 encodes all content at time 𝑡 computed from ℎ𝑡−1 and
𝑒(𝑤𝑡)

• 𝑒 𝑤𝑡 ∈ ℝ𝑚 is the m-dimensional embedding of current word using
pre-trained embedding word2vec. Here, m=300.



2.3 Context Sensitive Lexical Substitution
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• Target Word Identification for Substitution: We take only 
the nouns and verbs for possible substitution candidates.

• Substitution Selection

• Substitution Ranking

• Confidence Score



2.3.1 Substitution Selection
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• PPDB 2.0 (Pavlick et al., 2015) provides millions of lexical, phrasal 

and syntactic paraphrases.

• For instance, we can gather lexical substitution set S = {gliding, 

sailing, diving, travelling} for the target word (t = flying) from 

PPDB 2.0. 

• We hardcoded the model to select substitutes with the same POS 

tag and that are not a morphological variant ( such as fly, flew, 

flown ).



2.3.2 Substitution Ranking
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• word2vecf (Levy and Goldberg, 2014) capture functional word similarity 
(manage → supervise) rather than topical similarity (manage → manager)

• We use the word and context vectors released by (Melamud et al., 2015) which 
contains 173k words and about 1M syntactic contexts. 

• 𝒂𝒅𝒅𝑪𝒐𝒔 measures the appropriateness of a substitute 𝑠 from the substitution set 
𝑆, for the target word 𝑡 in the set of the target word's context elements 

𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛} ,

• Finally, we select the best substitution 𝑠 according to maximum 𝒂𝒅𝒅𝑪𝒐𝒔 scores 
over 0.7 and replace it with the target word 𝑡.



2.3.3 Confidence Score
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• When the substitutions are placed, probabilities are assigned to 

sequence of words in a generated candidate.

• A sequence of 𝑚 words {𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑚}. The score CS (Confidence 

Score) assigned to each candidate can be described as:

• 𝐶𝑆 𝑤1, … , 𝑤𝑚 =
1

1−𝑆𝑐𝑜𝑟𝑒𝐿𝑀(𝑤1,…,𝑤𝑚)

• In our experiment, a language model is used trained on English 

Gigaword Corpus



2.3.3 Confidence Score
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• K-candidate fusions are ranked and N-best paraphrastic 
sentence fusions are found which balances information 
coverage and abstractiveness.

• Score of a candidate sentence fusion, c is calculated, where 
𝛼 = 0.5 to give equal importance,

• Where, 𝑎𝑑𝑑𝐶𝑜𝑠 𝑽𝒊 is the 𝑎𝑑𝑑𝐶𝑜𝑠 score of the vertex 𝑽𝒊 and 
𝑁 𝑽𝑖 is the neighbors of the vertex 𝑽𝒊

Information Coverage Abstractiveness
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3. Multi-Document Abstractive Summarization
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• We apply our paraphrastic fusion model to 

generate multi-document level summary 

under a certain length limit.

• Given figure describes our each of the 

steps involved in multi-document 

summarization.



3.1. Sentence Clustering
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• This step is very important for two main reasons.

• Selecting at most one sentence from each cluster will

decrease redundancy from the summary side.

• Selecting sentences from the different set of clusters will

increase the information coverage from the document

side as well.

• For grouping similar sentences. We use a

hierarchical agglomerative clustering (Murtagh

and Legendre, 2014) with a complete linkage

criteria. Similarity threshold (𝜏 = 0.5) was set to stop

the process.

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆9𝑆8

𝜏 = 0.5

𝜏 = 0.3

𝑪𝟏

𝑪𝟐 𝑪𝟑
𝑪𝟒



3.2. Abstractive Sentence Selection
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• We use the concept-based ILP framework (Gillick and Favre, 2009) with

suitable changes to select the best subset of sentences.

• The system extracts sentences that cover important concepts while ensuring

the summary length is within a limit.

• Instead of bigrams we use keyphrases as concept.

• We extracted keyphrases using RAKE tool (Rose et al., 2010). We assign a

weight to each keyphrase using the score returned by RAKE.

• In order to ensure only one sentence per cluster we add an extra constraint.



3.2. Abstractive Sentence Selection
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Maximize the sum of 
keyphrase weights



3.2. Abstractive Sentence Selection
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Final score for the 
candidate sentence



3.2. Abstractive Sentence Selection
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Maximize the 
summary length



3.2. Abstractive Sentence Selection
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Summary length under a 
certain limit



3.2. Abstractive Sentence Selection
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Avoiding the repetition of 
keyphrases



3.2. Abstractive Sentence Selection
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Select at most one 
sentence from each cluster



3.2. Abstractive Sentence Selection
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Indicates presence of 
keyphrase



3.2. Abstractive Sentence Selection
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Indicates presence of 
sentence



3.3. Summary Length Limit Problem
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• In all the previous research, either truncated at last character or 
last sentence was removed.

• Recently four methods were proposed to solve this issue:
• Two of these are based on different decoding procedure

• Other two are learning based

• Recently proposed methods are also limited to generate a single 
sentence headline.

• Our model can effectively produce different length variations 
because of the shortest path strategy.

• In the proposed ILP formulation, the model tries to maximize 
the total summary length to optimally tackle length limit.
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4. Experiments
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•Sentence Level Experiment.

•Document Level Experiment.



4.1. Sentence Level Experiments
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• Dataset:

• Human generated fusion dataset by McKeown et al 2010

• Evaluation Metric:

• BLEU relies on only exact matching of n-grams.

• SARI which compares System output Against References and against the Input sentence. It computes

average of n-gram precision and recall of 3 rewrite operations: addition, copying and deletion.

• METEOR-E is an augmented version of METEOR using distributed representations.

• Compression Ratio is a measure of how concise a compression. A compression ratio of zero implies

that the source sentence is fully uncompressed.

• Copy Rate how many tokens are copied to the abstract sentence from the source sentence without

paraphrasing. 𝐶𝑜𝑝𝑦 𝑅𝑎𝑡𝑒 =
𝑆𝑜𝑟𝑖𝑔 ∩ 𝑆𝑎𝑏𝑠

𝑆𝑎𝑏𝑠



4.1. Sentence Level Experiments
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• Baseline Systems and Our System:



4.1. Sentence Level Experiments
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• Our model balances information coverage : BLUE and SARI.

• Our model completes abstractiveness (METEOR-E, Copy Rate) instead over compressing (Compression

Ratio).

• A slightly higher score in SARI because of multiple human abstractive rewrites.

• Copy Rate clearly indicates that other baseline systems are doing completely deletion based compression.

• Our higher score in METEOR-E because of the lexical substitution operation.

• Reasons behind a little bit lower BLEU score:

• Our model balances between information coverage and abstractiveness.

• BLEU works well on surface level lexical overlap.



4.2. Multi-Document Level Experiments
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• Dataset:

• DUC 2004 (Length limit = 100 words)

• Opinosis 1.0 (Length limit = 15 words)

• Evaluation metric:

• ROUGE-1 (unigram matches)

• ROUGE-2 (bigram matches)

• ROUGE-WE (Considering word embeddings to compute semantic similarity)

• We report the limited length recall scores for the evaluation metrics.



4.2. Multi-Document Level Experiments
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• Results:
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Thank You! ☺
Questions?

You can also email us at
mir.nayeem@uleth.ca || t.fuad@uleth.ca

mailto:mir.nayeem@uleth.ca
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