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Abstract—Early diagnosis of the neurodegenerative, irre-
versible disease Alzheimer’s is crucial for effective disease man-
agement. Dementia from Alzheimer’s is an agglomerated result of
complex criteria taking roots at both medical, social, educational
backgrounds. There being multiple predictive features for the
mental state of a subject, machine learning methodologies are
ideal for classification due to their extremely powerful feature-
learning capabilities. This study primarily attempts to classify
subjects as having or not having the early symptoms of the
disease and on the sidelines, endeavors to detect if a subject has
already transformed towards Alzheimer’s. The research utilizes
the OASIS (Open Access Series of Imaging Studies) longitudinal
dataset which has a uniform distribution of demented, non-
demented subjects and establishes the use of novel features such
as socio-economic status and educational background for early
detection of dementia, proven by performing exploratory data
analysis. This research exploits three data-engineered versions of
the OASIS dataset with one eliminating the incomplete cases,
another one with synthetically imputed data and lastly, one
that eliminates gender as a feature—eventually producing the
best results and making the model a gender-neutral unique
piece. The neural network applied is of three layers with two
ReLU hidden layers and a third softmax classification layer.
The best accuracy of 86.49% obtained on cross-validation set
upon trained parameters is greater than traditional learning
algorithms applied previously on the same data. Drilling down to
two classes namely demented and non-demented, 100% accuracy
has been remarkably achieved. Additionally, perfect recall and a
precision of 0.8696 for the ‘demented’ class have been achieved.
The significance of this work consists in endorsing educational,
socio-economic factors as useful features and eliminating the
gender-bias using a simple neural network model without the
need for complete MRI tuples that can be compensated for using
specialized imputation methods.

Keywords—Alzheimer’s disease; dementia; exploratory data
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I. INTRODUCTION

Alzheimer’s disease is a growing concern among the
world’s retired population. It is an irreversible, progressive,
neurodegenerative brain disorder that gradually dismantles
memory and reasoning skills and eventually, the ability to carry
out the simplest of tasks. In 2015, there were approximately
29.8 million [1] people worldwide who had been diagnosed
with Alzheimer’s disease and the number is increasing day
by day. This number is expected to be over 100 million by
2050 [2]. It most often affects about 6% of people 65 years’
or older [3]. Furthermore, Alzheimer’s disease, historically not

thought to be a normal part of aging, is now considered the
most common form of dementia among elderly people which
resulted in about 1.9 million deaths in 2015 [4]. Therefore, its
socio-economic implications are enormous, carrying a major
negative influence upon society and caregivers.

The National Institute of Neurological and Communicative
Disorders and Stroke (NINCDS) and the Alzheimer’s Disease
and Related Disorders Association (ADRDA), now known as
the Alzheimer’s Association, have defined the most commonly
used NINCDS-ADRDA Alzheimer’s Criteria as definite, prob-
able, possible and unlikely for diagnosis in 1984 [5]. Clinicians
have long advocated early diagnosis i.e., at the possible and
probable stages provided medications are frequently more
effectual at the onset of the disease and drug-free interven-
tions are also available to decelerate the atrophy of cerebral
tissue. Furthermore, a demented state may well represent
treatable and reversible medical conditions, other than early
Alzheimer’s in which case the earlier the actions, the better
the results. Moreover, an early diagnosis allows the patient
to carve out practicable medical and financial decisions while
also potentially allowing caregivers to develop better support
system for the affected [6]. More justifications endorsing the
early detection include amplified opportunities to participate
in clinical trials, additional time to record memories, improved
safety etc.

Prognostically, Alzheimer’s disease is diagnosed based on a
person’s medical history, narratives by relatives and behavioral
observations. Neuropsychologically, tests such as the Mini-
Mental State Examination (MMSE) are recognized to evaluate
cognitive impairments indicative of a positive diagnosis of the
disease [7]. Radiographically, Alzheimer’s disease is charac-
terized by the loss of neurons and synapses in the cerebral
cortex and in certain subcortical regions [8]. The hippocam-
pal atrophy, ventricle enlargement and cortex shrinkage are
sensitive features of Alzheimer’s disease. Therefore, doctors
perform scans like Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), or Positron Emission Tomography
(PET), to rule out other possible causes for the symptom.
Analytically, this study shows years of education (EDUC) and
Socio-Economic Status (SES) measured on a scale ranging
from 1 to 5 as significant features in early detection of the
disease. These perspectives justify MMSE, Clinical Dementia
Rating (CDR), Estimated Total Intracranial Volume (eITV),
Normalized Whole Brain Volume (nWBYV), EDUC, SES as
distinctive features characterizing Alzheimer’s.
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Due to the availability of OASIS longitudinal MRI data
and machine-learning methodologies, one can measure the
similarity of an individual’s cortical atrophy with that of a
representative Alzheimer’s disease patient cohort. The recent
bio-medical researches are gaining momentum using Neu-
ral Networks (NN). Neural Network models, consisting of
multiple hidden layers having different activation units, are
transcending traditional learning algorithms like Logistic Re-
gression, Support Vector Machine etc in performance. Neural
Networks are able to fit very complex functions with numerous
independent variables as features. Such models can discover
patterns spread across multiple dimensions upon refinement
of its initial parameters through many epochs using the back-
propagation algorithm. The derivatives calculated at each step
of backpropagation indicates in which direction the parameters
should be refined and a learning rate defines its magnitude.
The weights represent the mapping from one layer to the other
creating a layered, hierarchical architecture. The early hidden
layers learn comparatively simpler features while the latter
ones learn sophisticated features upon the previously learned
simpler features.

In this paper, a simple three-layer Neural Network archi-
tecture has been trained using the OASIS longitudinal MRI
dataset to classify among patients as having early Alzheimer’s
disease. Imputing data precluded the need for complete tuples
making the best use of available data. The study introduces
years of education and socio-economic status as two novel
features while further nullifying gender as a feature in order
to gain better performance measures.

The organization of this paper dictates the second section
as presentations of related work, the third section as a narration
of methodology, the fourth section as a tabulation of results
and the final section as concluding remarks.

II. RELATED WORK

Artificially intelligent former and recent researches un-
dertaken on detection of early or matured stage Alzheimer’s
can be categorized along three paradigms: detection applying
machine learning on structured data, detection using convo-
lutional neural networks on radiographs and detection using
hybrid methods combining the former two. Detection of Early
Alzheimer’s poses a supervised classification problem, some
literature on which are reviewed below.

A. Traditional Machine Learning Algorithms

Datta et al. [9] explored ML for classifying dementia
using the University of California, Irvine’s Alzheimer’s
Research Center’s data. Six ML methods were applied to a
database of 578 patients and controls. The neuropsychologists
applied the Diagnostic and Statistical Manual of Mental
Disorders-04 criteria to classify dementia status. The
researchers extracted age, sex, job, education and responses
of patients to questions from the Alzheimer’s database as
features. Using the Frequently Asked Questions (FAQ > 8)
and Blessed Orientation-Memory-Concentration (BOMC >
10) tests recommended by Agency for Health Care Policy
and Research, accuracies were 69% and 63% respectively,
which were 14% to 20% worse than results obtained by ML
methods. Combining the two tests (FAQ & BOMC) resulted
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in a 60% accuracy. Experiments showed that ML methods can
detect dementia 15% to 20% more accurately than applying
either the FAQ, BOMC or their combined cut-off criteria.

In another endeavor [10], the researchers utilized MRI
related data generated by the Open Access Series of Imaging
Studies (OASIS) project. There was an emphasis on explor-
ing the relationship between each feature of MRI tests and
dementia of the patient. They conducted exploratory data
analysis to state the relationship among data explicitly through
visualizations so as to discover the correlations before feature
extraction or prediction. Missing values were handled in two
ways: dropping of tuples having missing values and replac-
ing corresponding values exploiting off-the-shelf inference
libraries. Subjects were classified applying traditional Logistic
Regression, SVM, Decision Tree, Random Forest Classifier
and AdaBoost the results of which are depicted in Fig. 1.
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Fig. 1. Results obtained upon applying traditional ML algorithms

Alvarez et al. [11] presented a computer-assisted diagnostic
tool based on Principal Component Analysis and Support
Vector Machine (SVM) for improving the Alzheimer’s diag-
nosis accuracy by means of SPECT (Single Photon Emission
Computed Tomography) images. This process reduced the
dimensionality of the feature space from ~500000 to ~100,
thus facing the small sample size problem. The application of
SVM to high dimensional and small sample size problems still
remained a challenge and improving the accuracy SVM-based
approaches is a field in development.

B. Convolutional Neural Networks (CNN) on Radiographs

Sarraf et al. [12] classified Alzheimer’s data by using CNN
deep learning LeNet architecture. For this study, Alzheimer’s
inflicted patients (24 female and 19 male) and 15 elderly
normal control subjects with a mean age of 74.95 years were
selected from Alzheimer’s Disease Neuroimaging Initiative
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dataset. The pre-processing steps for the anatomical data
involved the removal of non-brain tissue from T1 anatom-
ical images using Brain Extraction Tool. The product of
preprocessing was 45x54x45x300 images in which the first
10 slices of each image were removed for containing no
functional information. The researchers adjusted LeNet-5 for
functional Magnetic Resonance Imaging (fMRI) data. LeNet
differentiated Alzheimer’s from normal control and the average
accuracy reached 96.8588%.

C. Hybridized Approach using Neural Networks

Gulhare et al. [13] proposed a Deep Neural Network
(DNN) classification method to diagnose Alzheimer’s from
MRI. The resulting attributes were respectively the area of
the extracted region, the perimeter, mean, standard deviation,
28 horizontal distances (D1, Do, ..., Dsg), the height and the
coordinates of the center of gravity of the region (G, Gy).
The database included a longitudinal collection of 150 (88
female and 62 male) subjects aged 60 to 96. 72 of the subjects
were characterized as non-demented while 78 as demented.
The DNN consisted of multiple hidden layers and a softmax
layer. The classifier rendered a maximum accuracy of 96.6%
with different pairs of attributes. It classified with an accuracy
of 90.3% retaining all attributes. The DNN approach showed
better performance compared to SVM.

III. PROPOSED METHODOLOGY

The OASIS longitudinal MRI dataset went through inten-
sive preprocessing and exploratory analysis which resulted in
three reproductions of the dataset with significant features that
were eventually modeled to produce phenomenal results (Fig.
2).
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Determination of

Selection of —p-| the Suitable NN
Features using Model
Exploratory Data
Analysis l
Performing
Xavier
Initialization to
Performi Performi Chosen Model Creation of
i erforming erforming . )
E,::cm;’,::::t:f Imputation on Imputation on Graphs
Cases (excluding OASIS Dataset OASIS Dataset
Gender) {
) Gender) Gender) N
Defining the
Cross-Ent
l Loss Functi -
S 0ss Function Determination of
Metrics from
Normalization of l Confusion Matrix
Input Features
Minimization of
Loss using
Gradient Descent
Division of Data
in a 70%-30%
Ratio
Application of
Adam
imization to |1

Gradient Descent

Fig. 2.  Workflow for the proposed detection of early Alzheimer’s disease.

Vol. 10, No. 3, 2019

A. Preparation of OASIS Dataset

1) Selection of Features using Exploratory Data Analysis
(EDA): Exploratory data analysis is a statistical process to
summarize tendencies within data, aided by visualizations.
EDA was primarily applied on OASIS dataset for extracting
insights beyond formal modeling to hypothesize features rein-
forced by data.
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Fig. 3. Percentage of total subjects having respective years of education
An exploratory visualization shows that demented (and
converted) subjects have experienced comparatively fewer
years of education. Concretely, the subjects who received 10
to 12 years’ schooling, are mostly demented while we see an
opposite scenario as learning prolongs—qualifying years of
education as a feature to detect early Alzheimer’s (Fig. 3).
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Fig. 4. Percentage of subjects belonging to respective socio-economic status.

Another summarization shows that as a transition is
made towards working class from the upper class, the
rate of dementia increases as a general trend justifying
socio-economic status as another feature characterizing early
Alzheimer’s (Fig. 4).

In another discovery, it is explored as a trend that demented
patients tend to have fewer years of education with a hum-
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ble socio-economic background, the opposite being true for
healthy subjects (Fig. 5).
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Fig. 5. Trend lines distinguishing subjects with respect to education and
socio-economic rank

Subjects found negatively affected often provided
reversed result in subsequent visits where CDR raised from
‘questionable’ to ‘mild’. Delay in MRI is expounded by
degeneration in tissue. Medically indicative features e.g.,
MMSE, age, eITV, nWBV, ASF have also been selected,
thus assembling ten significant features for early Alzheimer’s
diagnosis (Fig. 7).

2) Elimination of Incomplete Cases (excluding Gender):
Missing values in tuples are treated differently in various
linguistic frameworks. Representations such as NaN, garbage
values are problematic as they hail from a different distribution
causing their derivatives to lead to useless parameters. Thus
incomplete tuples have been subsetted out using R, bringing
down the number of training examples from 373 to 354.

3) Performing Data Imputation (including/excluding Gen-
der): Imputation is a statistical process of assigning a value
by inference to a missing field taking into consideration other
existing fields and summary of the dataset. In the OASIS
dataset, socio-economic status (SES) and Mini-Mental State
Examination (MMSE) were missing for some demented pa-
tients which were imputed using a tailored version of mean
imputation according to the algorithm below (Fig. 6).

This retained all 373 tuples making the best use of
available data. However, excluding gender as a feature
provided a gender-neutral version of the dataset.

4) Division of Data into a 70%-30% Ratio: According
to standard machine learning practices, OASIS dataset has
been split into a larger training set and a comparatively
smaller cross-validation set. 70% of the data have been used
for training, assigning 248 tuples for the training purpose
while setting aside the rest 30% comprising 106 records for
cross-validation. Imputation raised these numbers to 262 and
111, respectively.
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Specialized Mean Imputation Algorithm Devised for
OASIS data

1. Load to primary memory a copy of the dataset.

2. Map MMSE of the data structure to a sequence of
memory locations.

3. Replace blank locations with the average MMSE of
‘demented' subjects.

4. Replace MMSE of the dataset with the derived
sequence.

5. Embed the imputed, volatile dataset to non-volatile,
secondary hard disk memory.

6. Repeat the same procedure for SES.

Fig. 6. Specialized Mean Imputation Algorithm.

5) Normalization of Input Features: While pre-processing
data, it is crucial that parameters belong to the same scale for
a fair comparison between them and for the gradient descent
to converge following an oriented trajectory. Normalization
rescales all numerics in the range [0, 1] using the formula

below:
T — Tmin
Tnew = ey
Tmaz — Tmin

The OASIS dataset is replete with data hailing from
different units and scales. The range of scales for Cognitive
Dementia Rating and years of education are not identical, so
is the case for any other collection of features—thus justifying
normalization.

B. Fitting the Model

1) Determination of the Suitable Neural Network Model:
Numeric representations of the features constitute the input
layer of the model. The weighted inputs propagate through
two ReL.U-activated hidden layers each containing ten neurons.
Finally, a SoftMax layer computes the probabilities for the
classes, labeling as the highest (Fig. 7).
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Fig. 7. The proposed three-layer neural network.
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The hyper-parameters have been elected for the following
rationale:

e Number of layers, neurons: Two hidden layers are
chosen to prevent overfitting with ten hidden units, to
preclude underfitting.

e Learning rate: A small learning rate of 0.0001 has
been chosen to prevent overshooting across the min-
ima.

e  Number of epochs: The model was trained for a large
1500 epochs to quantify an optimum set of parameters.

e  Size of minibatch: Complementing primary storage,
32 tuples were assigned per minibatch.

e Adam Optimization parameters: 51: 0.9, 55: 0.999,
e: 1e-08

2) Performing Xavier Initialization to Chosen Model:
Xavier initialization ensures delicate initialization of weights in
order to keep the signal in a reasonable range of values through
multiple layers. This initialized the weights in the network by
drawing them from a distribution with zero mean and a specific
variance as, )

Nin

Var(W) = (2)
Where W is the initialization distribution for the neuron in
question and n;, is the number of neurons feeding into it.
The distribution used is typically Gaussian or uniform.

3) Defining the Cross-Entropy Loss Function: The cross-
entropy loss function has been optimized for the three-class
classification problem with a view to obtaining the greatest
refinement of the parameters. Represented here is precisely
the cross-entropy, summed over all training examples [14]:

—logL({y™},{3'™})

=Y = wilogg ™M= HE™, 5" @)
where 7 indicates the number of training examples, ¥,, denotes
the ground-truth value for an individual example, §(™) is the

prediction of the model and i represents the sequence of
activation within a layer.

4) Minimization of Loss using Gradient Descent: A set of
parameters 6 is to be chosen so as to minimize error J(6).
The gradient descent algorithm starts with some initial 6, then
repeatedly performs the update [14]:

0

56, ®) @)
This update is simultaneously performed for all features, i.e.,
Jj=0,1,..,n where « is the learning rate. This is a very natural
algorithm that repeatedly takes a step in the direction of the
steepest decrease of J(6). To implement the algorithm, the
partial derivative term has to be computed. If there is only
one training example (x, y), we have [14],

9]' ::0]'704
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1
5570 = a5 %we(x) —y)?
_ 2.%(/19(33) ~ )55 (ho() — )

Therefore, iJ(G) = ho(z) —y)).x; 3)
90;

To modify this method for a training set of more than one
examples, it is to be replaced with the following algorithm
[14]:

Repeat until convergence {

0;:=0;+ aZ(y(i) - hg(x(i))):ry) (for every j)
i=1
(6)

5) Application of Adam Optimization to Gradient Descent:
Adam is an algorithm for first-order gradient-based opti-
mization of stochastic objective functions, based on adaptive
estimates of lower-order moments. The parameters for Adam
Optimization are as follows:

e «: The learning rate or step size. Learning rate
decay, permissible in Adam, has not been used for
Alzheimer’s classification.

e  [31: The exponential decay rate for the first moment
estimates (e.g. 0.9).

e  [5: The exponential decay rate for the second-moment
estimates (e.g. 0.999). This value is set close to 1.0
on problems with a sparse gradient.

e e A very small number to prevent any division by
zero in the implementation (e.g. 10E-8).

C. Estimation of Metrics

Single-figure performance measures are customary to
measure the proficiency of a learning model. Evaluation
metrics such as accuracy, precision, recall are significant
within the medical research arena and are computed using
confusion matrices created via computation graphs.

1) Creation of Computation Graphs: A computational
graph is the representation of a collective mathematical func-
tion using the frameworks of graph theory. Complying with
the ethos of graph theory, a computation graph consists of
nodes and edges. The nodes are indicative of either operations
(denoted by round shapes) or operands (denoted by rectangular
shapes) while the directed edges delineate the sequence of
mathematical operations to be performed.

The NN framework of TensorFlow demands a computation
graph to be devised before running it as a session to calculate
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Fig. 8. Generalized computation graph for determining entries of the
confusion matrix

the numerics. For this purpose, we manually concoct a com-
putation graph (Fig. 8) in a bottom-up manner to determine
the entries associated with the confusion matrix i.e.,

e predicted demented and actually demented, true posi-
tives (TPs)

e predicted demented while actually non-demented,
false positives (FPs)

e predicted non-demented and actually non-demented,
true negatives (TNs)

e predicted non-demented while actually demented,
false negatives (FNs)

The popular one-hot boolean representation of class labels
has been used for the purpose. We define another computation
graph for calculating the accuracy of the implemented model
on the cross-validation set (Fig. 9).
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Fig. 9. Computation graph depicting computation of accuracy.
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Upon checking for equality, the output boolean vector
indicates positively the training examples identified correctly
as possessing early Alzheimer’s. Thus, the statistical mean of
this data structure provides the fraction of correctly identified
patients for the classifier.

2) Determination of Metrics from Confusion Matrix: In
the jargon of machine learning, concretely in the problem of
statistical classification, a confusion matrix is a specific tabular
layout used to explain the performance of a classification
model on a set of cross-validation data for which the true labels
are available. Rows of the matrix represent the instances in a
predicted class while columns represent the instances in an
actual class (or vice versa). The name originates from that it
makes viable to see if the system is confusing the classes (i.e.
commonly mislabeling one as another).

predicted class

demented non-demented converted
- i i .
B predicted predicted predicted
c demented and non-demented .
H X converted while
£ actually while actually actually demented
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5 5§ FPs TNs
c <
- .
g predicted nor?-rgg:\iteercnite d predicted
g demented while } converted and
H while actually
§ | actually converted actually converted
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Fig. 10. Confusion matrix for early Alzheimer’s classification problem with
a focus on categories ‘demented’ and ‘non-demented’.

The matrix (Fig. 10) is a special kind of contingency table,
with two dimensions and identical sets of classes in both
dimensions. For our medical diagnosis problem, we select
accuracy, precision and recall as evaluation metrics using the
terms calculated in the confusion matrix.

i) Accuracy

e  Accuracy attempts to answer the following question:
What proportion of predictions (both demented and
non-demented) was actually correct?

e  Accuracy is mathematically defined as follows:
accuracy = (TP+TN)/(P+N)

e A model that produces no false predictions provides
an accuracy of 1.0.

ii) Precision

e  Precision attempts to answer the following question:
What proportion of ‘demented’ identifications was
actually correct?
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e  Precision has been calculated as follows:
precision = TP/(TP+FP)

Leamning rate =0.0001

e A model that produces no false positives renders a 10
precision of 1.0. Lo
iii) Recall
PP M
A. learning curve of the proposed mf;dglﬁ
e Recall attempts to answer the following question: B g Gondery ™ 2
What proportion of actual ‘demented’ was identified Learming ate 0 0001
correctly? -
e  Mathematically, recall has been defined as follows: ”::
recall = TP/(TP+FN) :
e A model that produces no false negatives delivers a "
recall of 1.0. S-S
B. learning curve of the proposed model
learned upon perferming imputation on
OASIS dataset (including Gender)
Learning rate =0.0001
IV. EXPERIMENTAL RESULTS AND DISCUSSION 10
The experimental results (Fig. 13) of this study encompass 5
three iterations on the three-layer model, each using a different
. . . . . 04
data-engineered revision of the OASIS longitudinal MRI data.
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Fig. 11. Confusion matrices resulting from the application of three repro-

ductions of the OASIS data to the proposed model with a focus on categories Fig. 13. Metrics yielded by the proposed neural network in general.
‘demented’ and ‘non-demented’.

www.ijacsa.thesai.org 536 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

A. Metrics Yielded upon Elimination of Incomplete Cases
(excluding Gender)

The variation of the dataset which dropped training
examples containing at least one absent attribute value,
in fact, made a waste of the available entries within the
incomplete tuple and came up with the performance measures
shown in Fig. 13 in general.

Although this is the variation in the study to yield the
least accuracy, yet it outsmarted all typical machine learning
techniques on the OASIS data. Drilled down to just two
classes (Fig. 11.A) as having (demented) or not having (non-
demented) early Alzheimer’s, the classifier produces impres-
sive results as given in Table I according to the formulae given
in Section I11.C.2.

TABLE 1. METRICS EVALUATED AS PER APPROACH A

performance measure

calculated value

accuracy

(35+55)/(35+0+0+55)=1.0000

precision

35/(35+0)=1.0000

recall

35/(35+0)=1.0000

B. Metrics Yielded upon Performing Imputation on OASIS
Dataset (including Gender)

The variation of the dataset using customized, statistical
mean imputation method made the best use of available
data and synthesized artificially inferred data to replace
the missing attributes. This statistically analytical approach
created realistic data and also included gender as a feature
rendering the general metrics as summarized in Fig. 13.

This variation of the dataset outperformed the previous
metrics in approach A. Focusing on just two classes (Fig.
11.B) as having (demented) or not having (non-demented)
early Alzheimer’s, the model produces successful results as
the following (Table II).

TABLE II. METRICS EVALUATED AS PER APPROACH B

performance measure

calculated value

accuracy

(40+54)/(40+1+0+54)=0.9894

precision

40/(40+0)=1.0000

recall 40/(40+1)=0.9756

C. Metrics Yielded upon Performing Imputation on OASIS
Dataset (excluding Gender)

This variation of the dataset is statistically imputed with
customization as per labels, similar to the approach followed
in B except for that gender has been eliminated as an input
feature. The adaptation is an imputed version of the dataset
described in A. This delivered the metrics as tabulated in Fig.
13 in general. This edition of the dataset outshined approach
B and all other learning models (Fig. 1), making the model
unbiased towards gender. Concentrating on just two classes
(Fig. 11.C) as having (demented) or not having (non-demented)
early Alzheimer’s, the model produces remarkable results like
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the following (Table III):

TABLE III. METRICS EVALUATED AS PER APPROACH C

calculated value
(42+54)/(42+0+0+54)=1.0000

precision 42/(42+0)=1.0000

recall 42/(42+0)=1.0000

performance measure

accuracy

The research primarily being an attempt to classify the
subjects as having or not having early Alzheimer’s, tends to
center its attention on just two categories namely, demented
and non-demented. Due to an uneven share of the ‘converted’
category in the dataset, the model performed incompetently on
this category which is venial given the purpose of the research.

Method

I 3-layer NN with ‘NA's Dropped

[ 3-layer NN with Imputation Including Gender
M 3-layer NN with Imputation Excluding Gender

Precision for | Precision for

Recall for Recall for
Accuracy Category:'Non-| Category: |Category:'Non- Category:
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Fig. 14. Comparison of differently learned weights (Fig. 12) on the basis of
performance measures.

While deployment of the model, the dataset can be
engineered depending on utility as they each excelled in
different metrics. Should accuracy be the foremost priority,
parameters learned using the gender-exclusive imputed dataset
will be an ideal pick. Likewise, parameters derived by training
on any imputed dataset should suffice for perfect precision or
recall (Fig. 14).

The simplistic, gender-neutral, three-layer neural network
proposed superseded other hyper-parametrically tuned machine
learning approaches (Fig. 15) through all three iterations using
different variations of the OASIS dataset, performing greatly
in terms of medically significant metrics (accuracy, precision,
recall). Furthermore, the model has been trained (Fig. 12) on
structured data, the business value of which is generally greater
while the cost of acquisition is relatively lower than medical
imagery.
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Method
M Logistic Regression (with "NA‘s dropped)
M Logistic Regression (with imputation)
M Decision Tree
SVYM
M AdaBoost
M Random Forest
I 3-layer NN with "NA's Dropped
3-layer NN with Imputation Including Gender
M 3-layer NN with Imputation Excluding Gender
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Fig. 15. Comparison among traditional learning models and proposed model.

V. FUTURE WORKS AND CONCLUDING REMARKS

Traditional machine learning methods, being efficient in
predicting results upon carefully selected features, have thus
far been a convenient approach towards early Alzheimer’s de-
tection. This study proves a simplistic neural network approach
to be an even better methodology for its remarkable feature-
extraction properties leading to best performance metrics (e.g.,
accuracy, precision and recall) obtained so far on the OASIS
dataset.

However, the scope of this study can be broadened to
classify among more stages of dementia upon data augmen-
tation. Due to scarcity of data, this experiment performed
dismally on the ‘converted’ category, causing a dent to the
overall metrics—although providing tremendous results in the
‘demented’ and ‘non-demented’ categories which surpassed all
conventional results.

This unique study introduces two novel features namely
a person’s socio-economic standing and educational back-
ground—bringing into question the role of gender in the
prediction. This research also precludes the need for complete
MRI data for a patient as the missing attributes can be
inferred using customized imputation methods. This makes the
model feasible, cost-effective. This study has unleashed new
dimensions to current researchers intriguing them to look for
features in a broader scope.
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